Far-field to Near-field Data Relations for the Inverse Electromagnetic Scattering Problem
نویسندگان
چکیده
منابع مشابه
Combined Far Field Operators in Electromagnetic Inverse Scattering Theory
We consider the inverse scattering problem of determining the shape of a perfect conductor D from a knowledge of the scattered electromagnetic wave generated by a time-harmonic plane wave incident upon D. By using polarization effects we establish the validity of the linear sampling method for solving this problem that is valid for all positive values of the wave number. We also show that it su...
متن کاملElectromagnetic near field and the far field, Chapter two
Editor’s note: This book is useful for all designers who need to test or have their designs tested for emissions, radiation and susceptibility for EMC. It can also help a wide range of specialists in biology, medicine, labor safety, environmental protection, metrologists, EMF meter designers, testers and users, and even for those who must make legal decisions on the grounds of measurement resul...
متن کاملNear-field imaging with far-field data
Using the inverse diffractive grating problem as an example, we demonstrate how a super-resolution can be achieved stably by using far-field data. The idea is to place a slab of a homogeneous medium with a large index of refraction above the grating surface, and more propagating wave modes can be utilized from the far-field data which contributes to the reconstruction resolution. © 2016 Elsevie...
متن کاملElectromagnetic Scattering by a Homogeneous Chiral Obstacle: Scattering Relations and the Far-Field Operator
Time-harmonic electromagnetic waves are scattered by a homogeneous chiral obstacle. The reciprocity principle, the basic scattering theorem and an optical theorem are proved. These results are used to prove that if the chirality measure of the obstacle is real, then the far-"eld operator is normal. Moreover, it is shown that the eigenvalues of the far-"eld operator are the same as the eigenvalu...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Research and Reviews in Physics
سال: 2021
ISSN: 2582-5992
DOI: 10.9734/ajr2p/2021/v4i330144